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Abstract-The natural convection from a thermal leading edge region (Tw/Too = 1 + TO xn, n > 1) is 
determined and matched with the known solution immediately above this region. It is shown that in 
this region there is a downward conduction of heat near the wall which flows back into the wall just 
above the leading edge so that there is a region just above this point in which the heat transfer is 
reversed to the expected direction of heat flow. Comparisons in temperature and velocity distributions 

at the matched position of the solutions are given for several values of the exponent n. 
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NOMENCLATURE 

boundary-layer density [lb/f@] ; 
boundary-layer temperature [OR] ; 
boundary-layer thickness [ft]; 
vertical and horizontal coordinates 
respectively [ft] ; 
wall position at conduction reversal 
WI ; 
vertical coordinate in XI units; 
boundary-layer thickness in XI units; 
boundary-layer velocity [ft/s]; 
velocity functions; 
temperature function (70x%); 
heat-transfer function; 
critical solution parameter; 
Prandtl number ; 
heat-transfer function; 
slope of boundary-layer edge at 
x = 0; 
solution function for matching. 

conditions at boundary-layer edge; 
conditions at wall; 
condition at solution matching; 
maximum value ; 
leading edge solution; 
solution above leading edge region. 

NATURAL CONVECTION AT A THERMAL 
LEADING EDGE ON A VERTICAL WALL 

IN PAPERS [l], [2] which studied natural con- 
vection along a vertical wall near and above the 

thermal leading edge and along wall sections 
under several starting or initial conditions for 
flow speed and temperature distribution of the 
natural convection type, it became clear that the 
investigation could not be extended to a thermal 
leading edge unless the vertical heat conduction 
term was included in the usual boundary-layer 
equations for the flow. When the vertical con- 
duction term was retained in the equations and 
wall temperatures of the form 

T,/T,=l+~~x~,x>O,n>l; 

TWIT,0 = 1, x <O 

selected so that a thermal leading edge on the 
wall was assured, then the only solution available 
appeared to be an asymptotic solution in powers 
of l/x(” +3)1s. This series converges rapidly to 
that which had been found in closed form for the 
region above the leading edge in which the 
vertical conduction term is not significant. This 
asymptotic solution did not, of course, allow an 
approach to the thermal leading edge and all 
attempts to find a solution for the leading edge 
region failed. 

A preliminary exploration of the comparably 
simpler problem of heat conduction in a solid 
wedge having surface temperatures assigned to 
the natural convection case gave a clue that the 
form of the temperature distribution 

T/Too = 1 + T(X) (1 - ~/a)~ 

assumed for the treatment of the natural con- 
vection case may not be suitable at the leading 
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edge region and prevented an acceptable 
approach to it. 

As a result, it was decided to start with a more 
generalized setting in the temperature and 
velocity distributions and make the necessary 
simplifications under guidance of the boundary 
conditions. 

At this stage temperatures and velocities of the 
form 

T/Tm = 1 + 7 + 71 Y + ‘TZ y2 + 7-3 y3 + 74 y4 

(1) 

u=uy-i-uly~+u2y3+u3.Y4+u4y5 (2) 

in which the T’S and u’s were assumed functions 
of x alone, were taken. 

The following boundary conditions were 
imposed : 

For the temperature distribution on the wall, 
the form 

Tu,/Tcn =(T,'T&=o = I f T SE 1 + TOX~, 

n>l (3) 

in which the restriction n > 1 provides 

(dT,/dx)z=o = 0 

and hence assures no downward conduction 
near the wall at x = 0. 

The velocity at the wall and the vertical 
velocity at the edge of the boundary layer must 
both be zero so that 

u,=o = u,=s = 0. (4) 

There should be no vertical shearing stresses 
at or adjacent to the edge of the boundary layer, 
hence 

(~u/~y)~=~ = (~z~/ayz~~~=~ = 0. (5) 

There should be no heat conduction at the 
edge of the boundary layer, hence 

(ar/ax),=, = (W/&&=6 = 0. (6) 

Finally at the wall and particularly near x = 0 
the requirement of zero velocity leads to (7). 

p2-jax2 + a5fpyqyDo = 0. (7) 

Upon imposition of the above boundary 
conditions the equations (1) and (2) become 

T/T* = 1 + T + ~1 _V - T” ys/2 - (47 + 371 S 

- T” a2) (~,6)~ + (3 T + 271 6 - 7” s2/2) 

(Y/V (8) 

u = (1 - YPJ3 [ua (Y/6 + v2P> + Ul ya1 (9) 

which now contain only the four functions 6, 71, 
u and MI. 

It is evident that ~1 is a wall heat-transfer 
function while u is the wall velocity shear 
function. It will be shown that UI relates to the 
magnitude and location of the peak velocity if 
it is selected so that a similarity solution for the 
velocity distribution is to result. 

The equations (8) and (9) may now be used to 
reduce the boundary-layer equations for the 
leading edge region in integral form 

+ I* (Wpyv)po = 0 (10) 
6 6 

cp g & 
s 

,oU (T - Tm) dy + k 
s 

@‘T/ax2 
0 0 

+ Z’sTfdys) dy = 0 (11) 

to ordinary differential equations. The resulting 
equations are nonlinear and of order one and 
two respectively. They are subject to further 
simplification by a transformation on the heat- 
transfer function ~1 and, as indicated above, by 
the retention of similarity on the velocity 
distribution. 

The transformation 

~1 = d?r/dx (12) 

reduces the energy equation to a first-order 
equation and the selection of the function ~1, 
such that 

urs=-cu, o<c<4 (13) 

provides similarity in the velocity distribution 
and the constant c provides a choice either of the 
peak value mag~tude of the velocity distribu- 
tion or in the location of this peak value in the 
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boundary-layer flow. Figure 1 shows velocity 
distributions for c = 4 and c = 0. Values of 
c > 4 would bring the peak closer to the wall but 
would introduce negative values of U close to 
the boundary-layer edge y/S = 1. The previous 
solutions for constant temperature wall sections 

FIG. 1. Effect of parameter c on velocity distribution. 

gave velocity distributions corresponding to 
c = 0 and a peak value at (y/S),,,k = +. Values 
of c < 0 should give peak value positions further 
from the wall then y/S = 5 and even greater 
peak values then those for c = 0. Both of these 
results are considered unlikely in the leading 
edge region. 

With the help of the qualifications discussed 
above, the equations 8 and 9 will take (10) and 
(11) into equations 

k d4, [37S/5 + 3~; P/20 - 7” S2/60] - f1 

+ pm cp g u {A T“ 84 + B 7 62 

+ c7;83}=0 (14) 

-g (3 rSj5 + 3 7; P/20 - 7” P/60} 

+ E d(G’ S3)/dx + YU = 0 (15) 

in which 

A = c/36 - 1 l/72 

B = - 31~136 + 1112 

c = - c/4 + 1319 

E = (6~2 - 69c + 208)/13860. 

Since these equations contain the three 
functions 6, u and 71 additional conditions must 
be found for a complete solution of the problem. 
These additional conditions are provided by the 
process of matching the leading edge solution 
with that above the leading edge region which is 
already available. The further conditions needed 
will be introduced later in the paper when the 
matching process is treated. 

One verifies readily that equations (14) and 
(15) have a general solution of the form 

S=Saxr3[I+SixS+SsxzS+...] 1 

U= Uoxrz[l + Uixs+ Uzxss+...] (16) 

~1=Tox~l[l+Tlx~+T2~~~+...] i 
in which the exponents rl, r2, r3 and s are 
functions of n definable in part by the differential 
equations (14) and (15). One finds from the 
differential equations that for admissible families 
of solutions we must have 

rl=n+r3-2 

r2 = n + r3 

s = (n + 3)/m i 

(17) 

in which m is a positive integer. Additional 
physical qualifications are available to aid in the 
selection of the two independent parameters of 
equation (17). If the heat-transfer coefficient is to 
remain finite at x = 0 and since n - 1 > 0 it is 
clear from the first equation in (17) that r2 > 1. 
It may further be shown that for r3 < 1 the 
temperature distribution given in (8) will contain 
temperatures below ambient near the edge of 
the boundary layer in the neighborhood of the 
leading edge. 

Deferred for the moment are arguments for 
the fact that there are reasonable qualifications 
which indicate that values r3 > 1 are not suitable 
so that it appears that r3 = 1 must be taken as 
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most suitable. Also deferred for the moment is a 
discussion about the selection of the parameter 
m. 

When the expansions (16) are put into the 
differential equations (14) and (15) the first 
terms of the resulting expansions in powers of 
x depend respectively only on the conduction 
term of the energy equation and the buoyancy 
and viscous terms of the momentum equation. 
Thus, it appears that the fluid is acting as a 
relatively slow moving viscous fluid in which 
energy transfer is dominantly by conduction and 
the momentum transfer by buoyancy and 
viscous shear. These first terms referred to 
determine TO and UO to be 

To = {TV So [I - n(n - 1) 6;/36] 1 

3 n(n + 1)/5}/[1 - 3 n(n + 1) SZ/20] 
(18) 

UO = g TO SO [36 + 9 TO ~O/TO - n/n - 1) 

I S;]/60 Y = g To/v n(n + 1) , 

These equations point up the startling and 
unanticipated result that in the thermal leading 
edge neighborhood the conduction of heat is into 
the wall rather than out of it as would have been 
expected. 

THE REVERSE CONDUCTION AT THE 

LEADING EDGE 

For the current wall temperature distribu- 
tion under study (T/Tm = 1 + 70 xn, n > 1, 
70 > 0) one must expect the convective velocities 
will always be positive (upward) and, hence, we 
need a solution in which UO > 0. It follows from 
the second of equations (18) that TO > 0 and, 
hence, in a small enough neighborhood of the 
leading edge the heat conduction will be into the 
wall. It is plausible that this phenomenon will 
occur in all leading edge cases where the wall 
temperature gradient is zero at the leading edge 
and positive immediately above it. For the 
particular case in hand this conclusion and 
equations (18) enable the determination of an 
admissible range for the leading edge slope 
parameter SO. 

ADMISSIBLE RANGE FOR LEADING 

EDGE SLOPE 

From equations (18) one finds readily that 

there are two SO ranges which will give a positive 
TO. They are 

6; > 36/n@ - 1) 
S; < 20/3n(n + 1) > 

(19) 

and it may be shown that only the second of these 
admits temperature distributions which avoid 
values that include temperatures such that 
T/T, < 1. 

For this purpose we compute the temperature 
gradient from equation (8) in the form 

d(UTm)/d(y/S) = (1 - v/S) 1~1 

+ (Ti - 7” 6) (y/s) + (-12 T/8 - 8 Tl 

+ 2 7” S> WI21 = (1 - v/S) Q (Y/S) (2% 
and study the quadratic form Q (y/S) in the 
neighborhood of the leading edge. For the 
selected value r3 = 1 and in the neighborhood 
of the leading edge the quadratic form may be 
written 

n(n - 1) So 70 Y-1 CP + (P - 1) (y/S) 

+ (-l/3 e2 - 8 P + 2) (Y/S)~I 

in which 

(21) 

p = To/So TO n(n - 1) = (e2 - 1)/9 [e2 

- 5 (n - 1)/27 (n + l)] 

Si = 36 e2/n(n - 1) 

Now for es > 1 we have the first inequality of 
(19) and 

0 c p = (e2 - I)/9 [e2 - 5 (n - 1)/27 

so that 

(n + 111 < 119 (22) 

IQ WN2/=o = P > 0 
[Q (y/S)]U=~ = Q (1) = 6p + 1 - l/3 e2 > 0 

and in the interval 0 < y/S < 1 the form Q has 
either two real roots or no real roots. Two dis- 
tinct roots would mean both a maximum and a 
minimum in T/Too in 0 < y/S < 1 and, hence, 
some acceptable T/T, values less than one. A 
double root would mean a horizontal inflection 
point in the T/T, distribution and hence the 
absence of the maximum which must be present. 
The absence of real roots also cannot be accepted 
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because the required maximum is not provided. 
It follows the 60 range defined by 

a0 > 36/n(n - 1) 

must be rejected. For 

e2 < 5(n - 1)/27(n + I> 
we have 

1 - l/3 e2 < 1 - 1/[(15) (n - 1)&z + 1) 271 

= 1 - 9 (n + I)/5 (n - 1) < 0 

so that 

Q (0) = P > 0 
Q(l)= -6p+ 1 - 1/3e”<O 1 (23) 

and the quadratic form Q (y/S, has one and only 
one real root in 0 < y/S < 1 which must 
correspond to a maximum in the distribution. 
Thus, it is clear that to assure upward convective 
velocities and temperatures such that T/T, 3 1 
the SO range of values must be limited to that 
defined by the second of the inequalities in (19). 

Selection of family of so~~t~~ns correspo~~i~~ 
to r3 = 1 

As has been indicated a selection from two 
families of solutions is still to be made [see (17)]. 
These correspond to 

r3= 1, r1==n- 1, Y2=?2+1, 
s = (n + 3)/m (24) 

and 

r3 = 1 + (?I + 3)/m, YI = (12 - 1) + (n + 3)/m, 

r2 = fn + 1) + (n + 3)/m, s = (a + 3)/m 

(25) 

in which m is a positive integer. 
The second family (r3 > 1) is rejected for two 

reasons. First, this family yields solutions with 
the bounda~-layer edge tangent to the wall at the 
leading edge so that the isotherms coming out of 
the wall in that region would have to make 
extremely abrupt and sharp turns which would 
make for questionable physical validity. The 
family for rs = 1 allows more space for the 
isotherm turn. Secondly, on the basis of past 
experiments one must expect that the wall 
temperature gradient should become negative 
fairly rapidly as one moves up away from the 
leading edge and its numerical value should 

change fairly rapidly to values experienced with 
natural convections above the leading edge. 
Some preliminary calculations which compare 
the rate of change of the wall gradients aTjay as 
x increases from zero indicate that the family 
for r3 = 1 gave the more rapid changes to the 
negative values needed. 

For the reasons above the family defined by 
~3 = 1 was selected for solution of the leading 
edge problem. 

Selection of the parameter s 
One finds on the substitution of (16) in (14) 

and (15) to compute the coefficients 60, 81, . . , ; 
UO, Ul, &, f . .; TO, TI, Tz, . . . that the first 
few terms of each of these sequences are inde- 
pendent of the convective terms in both the 
energy and momentum equations. Further, that 
the number of the terms independent of the 
convective phenomena depends on the value of s 
or indirectly on the choice of m. For m = 1 only 
the first terms are independent of the convective 
effects but s > 4 and it becomes necessary to 
cope with abrupt changes in the dependent 
variables when x approaches some critical value 
above the leading edge such as the point of 
conduction reversal on the wall. Since it is 
desirable to get past such a position with the 
leading edge solution, abrupt changes of this 
character are to be avoided by the selection of s 
as close to 1 as is feasible, It may be shown that 
m may be selected so that 1 < s < 514 for all 
it > 1. For this range of s values we will have 
m 2 4 so that the convective effects do not 
influence the coefficients of (16) before the fourth 
terms and this suggested that the equations (14) 
and (15) might be further approximated by 
dropping the convective terms. Physically this 
means that the transport of energy is essentially 
by heat conduction and the motion is that of a 
slow moving viscous flow. 

With the last approximation the leading edge 
boundary-layer equations may be written 

3 r8i.S + 3 ~1 s2/20 - T” 83160 - 7 7 r1 

(dx): : 0 (261 

-g (3 7815 + 3 ~1 S2/20 - 7” ~3160) + v u = 0. 

(27) 
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Solution of the simplified system 
These equations have a simple solution in 

closed form if the function ~1 is restricted to two 
terms of its expansion shown in equation (16). 
It will be assumed to have the form 

71 = TIJ P-1 (xi - xs) (28) 

in which xi is the position of the expected 
conduction reversal on the wall and To > 0 so 
that the heat conduction is from the wall to the 
fluid for positions x > xi. 

With the selected form of the function 71, 
equation (26) has a solution 

P = (ki - D”),‘(l - 02) 

- ks D (k3 - D3),‘P (1 - 0”) (29) 

in which 

K2 = 20/3 (n + s) (n + s + 1) 

X = X/Xl 

kl = (n + s) (n + s + 1)/n (n + 1) 

kz = n (n - 1) K/9 

k3 = 27 (n + s) (n + s + I)/5 n(n - 1) 

P = TO x;/70 

and in which the parameter P turns out to be 
very interesting and significant. The value 
P = P,, G kz(k3 - l)/(ki - 1) divides the solu- 
tions into two classes corresponding to P > Per 
and P -C P,,. For P > PC, (29) gives an X, 8 
system of curves of the type shown in Fig. 2. 
Neither leg of the triangular section is suitable 
for the boundary-layer edge function 6. The one 
steeper to the wall gives the high SO values which 
were rejected because the temperature distri- 
bution for such cases contained values T/T, < 1. 
The shallower one has the wrong curvature at 
the top for the matching process needed for a 
complete solution. One would also find that the 
shallower leg gives relatively inadequate tempera- 
ture gradients near the wall for the matching 
process. For P = P,, the two branches of the 
system merge into a single branch as shown in 
Fig. 3. This result is also unsuitable because of 
the steepness of the leg emerging at X = 0 and 
because the turn where matching must occur is 
for values of X < 1. Matching of solutions is 

6 
FIG. 2. Thickness distribution solution when P < PC,. 

expected at X > I, that is, above the conduction 
reversal point. For P < P,, one gets curves of 
the type shown in Fig. 4. The leading edge slope 
SO is clearly less than one and, hence, satisfies the 
criteria Si < 20/3n(n + 1) = IO/S, IZ = 2 de- 
veloped from the study of the inequalities (19). 
Also these curves have the proper curvature for 
matching at some X > 1. It thus appears that 
admissible solutions are available for values of 
P < Per. 

Selection of the parameter P 
A value of P is sought which will most suitably 

take the temperature distribution of the leading 
edge solution into temperature distributions 
needed for matching with the solutions above 
the leading edge. The temperature distribution 
used in reference 1 for wall temperatures of the 
type TWIT, = 1 + TO xn took a form 

T/Too = 1 + To x” (1 - y/s)2 (30) 

which has plausibility from the very limited 
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FIG. 3. Thickness distribution solution when P = Per. 

I 
0.1 0.2 0.4 -0.6 0.6 

s 

.4 

I:0 

FIG. 4. Thickness distribution solution when P < PC?. 

experimental data showing a parabolic tempera- 
ture distribution. For the present purpose this 
form will be generalized to 

T/T* = 1 + TO xm (1 - y/8)81 (31) 

which should remain a plausible form so long 

H.M.--dL 

as SI does not deviate greatly the value 2. This 
new form is introduced for the purpose of 
providing an additional parameter to enable a 
smoother transition of the soIutions at the 
matching position. If one introduces the tempera- 
ture variable 

then 

ii” zz [T/Tm - l]/~ 

T = (1 - y/8)>“” 

and the normal wall temperature gradient G, 
may be written 

G?, = - fr (32) 

and this will be one of the boundary conditions 
for solution-matching. Since the gradient should 
have the same value at the matching position in 
both solutions and since sr should not deviate 
greatly from the value 2, we must seek a P in the 
leading edge solution which yields a gradient 
G, as close to 2 as is available. It turns out that 
available gradient values are all less than 2 and 
that they increase with P as P approaches Per. 
Thus, the closest G?; value to 2 is obtained by 
letting P-t Per. Fiwes 4, 5 and 6 show the 
bounda~-layer thickness dist~bution for n = 2 
as P increases toward Pm = 5.2009. The leg 
emerging from the leading edge has become quite 
linear and the turning section at which matching 
is expected has sharpened considerably. In Fig. 6 
the P value is quite close to PC,. and the turn is 
such that the matching position is essentially 
determined. Also note that G,, which is negative 
above X = 1 (the reverse conduction position), 
has a numerical value close to 1-S at the matching 
position and also that it has an essentially rapid 
linear numerical growth toward the peak value. 

~~c~tio~ of ~~tc~j~g position 
It was observed in the numerical work for 

determining thickness distributions when P was 
close to PC, (see Figs. 5 and 6) that the usable 
parts of the functions defined by equation (29) 
(that is, the essentially linear part emerging from 
the leading edge X = 0) corresponded to values 
of D which were quite close to unity. Thus, we 
may put 

1 - D == e/r, I = O(E) 

P= Per(1 - E) (33) 
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3 

FIG. 5. Thickness distrjbution solution P = 5 < PC,. 

and approximate equation (29) by 

A? = 1 - (kl - I)/& - I) + (kl - 1) 

(1 - r)/2 (34) 

The values of X near the sharp turn position will 
correspond to small values of r so that we may 
estimate the X matching position by 

%I,, = (1 + ](n + s) (PI + s + 1)/n (n + 1) 

- 11/z - E(n + s) (n + f + l)in (n + 1) 

- 1]/[5*4 (?z + s) (tz + s + 1QzC.n - I) - I]> 

(35) 

Thickness distribution to the point of matching 
Since, as has been indicated, the values of D 

from the leading edge to the position of matching 
are close to unity we have from (30) 

8 = KXD ,KX= 1/[20/3(n+s)(n+s+ l)]X 

= 60 x (36) 

s 
FIG. 6. Thickness distribution and wall temperature 

gradient when P = 5-2 -C P,,. 

The thickness at the matching position will be 
&Ilat = ~o+Knat. 

Wall temperature gradient at the matching 
position 

We have from (8) and (35) 

(1 - x8) x DK/To xn = PKD(1 - x”) 

(G&at = - 2 + 10 n(n - 1)/S (n + s) 
1 

(37) 

(n+s+ l>J 

and it is seen that for n close to 1 the gradient 
will be quite cIose to the -2 used in reference 1. 
Further, the value of sr of equation (32) may 
now be determined as 

sr = 2 - 10 n(n - 1)/9 (n + s) (n + s + 1) 

(38) 

in order to match temperature gradients of the 
leading edge solution with the usual solution 
above this position. 
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As a matter of passing interest and to disclose 
additional geometric significance of some of the 
parameters it may be shown that the slope of 
the isotherms entering the wall in the leading 
edge region may be written 

(dY/dx)gh,m = - 7’/7i = - n/Per (1 - x8) 

(39) 

The position of reverse conduction 
Equation (35) predicts the nondimensional 

matching position in terms of the position xi of 
reverse conduction. We may determine the 
matching position as a function of known 
parameters and thus also find the reverse 
conduction position in terms of these parameters. 
For this purpose and to optimize a matching of 
the velocities at the matching position we return 
to the problem above the leading edge and 
generalize the velocity form used in that prob- 
lem in addition to the generalized temperature 
form introduced by equation (32). 

We write 

U = n (Y/S) (1 - Y/~)~Z (40) 

For sz = 2 this becomes the form used in 
reference 1. If one drops the vertical conduction 
term in equation (11) and assumes the tempera- 
ture form (32) and the velocity form (40) then 
(10) and (11) may be reduced to the ordinary 
equations 

r’ u a2 = T(U’ h2 f 24 66’ - c2) = 0 
2 z&l’ s2 + u2 66’ - c3 7 s2 + c4 u = 0 > 

(41) 

in which 

c2 = sl (sl + $2 + 1) (sl + s2 + 2) v/Pr 

c3 = (2 s2 + 1) (2 .Q + 2) (2 s2 + 3) g/2 (Sl + 1) 

c4 = (2 s2 + 1) (2 s2 + 2) (2 s2 + 3) v/2 

The equations (41) have the following closed 
form solution with appropriate starting values 
at some starting X above the leading edge. 

U = 2 T:” x(1+n)/2 2/{c3/[5 + 3 n + cd 7 

(3 + W/c211 

6 = 2 X(1-n)/4 d[c2/(3 + 5 n)]/{4 70 cg/ 

K5 + 3 n) + c4 (3 + 5 n)/c21>1’4 

(42) 
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Now since the 6’s of both solutions must be 
equal at the matching position it follows from 
(36) and (42) that 

X(n+3)14 = 

J 

3(n+s)(n +s+l)c2 
mat 5 (3 + 5n) II 

(4 70 c3/[5 + 3 n + c4 (3 + 5 n)/c21 Ill4 (43) 

and this combined with equation 35 for Xmat 
determines the conduction reversal position as 
a function of n, TO, PC,., s2 and c. There remains a 
determination of the parameters ss and c. 

Determination of velocity parameter s2 and c 
Because of the approximation methods used, 

a precise matching of the temperature and 
velocity distributions at the matching position 
for the two solutions involved cannot be antici- 
pated. Approximate matching is available and 
the matching process itself enables a complete 
determination of all the parameter variables of 
the solutions. Precise matching of the wall 
temperature gradients has provided a determina- 
tion of si. Values of c and ss may be determined 
by a matching of the peak velocities and the 
positions of these peak velocities. 

It may be shown readily that the upper 
solution has a peak velocity 

(UIn,X)US = U Q/(1 + s2)(1+@) (44) 

at the position 

(Y/S)US = l/(1 + s2) (45) 
max 

Correspondingly the (Umax)LES may be 
written 

(‘%mx)LES = U a{[1 - (y/8)rnit~]~ [(3 - c) 

CJ+%,, + (Y/%=1 > (46) 
in which 

(Y/S) LES = 1 - 

mm 

2(7-2c)-~[(7-2c)2-15(4-c)(3-c)] 

5 (3 - c) 
(47) 

A direct algebraic relationship between ss and c 
for equal values of maximum velocities is 
evidently not available from these equations so 
that graphical methods were employed. 
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Let K,, be a function of se such that 

4~213 (n + s) (8 + s + 111 Xmat (48) 

and this determines a K,, in a form reducible to 

18 Pr FF2 (n + s) (n + s + 1) (3 + 5~) 

K8z = F+ 3 n) + (SI + I) Pr FZ (3 + 5 n)] 15.4 (n + S) (n + s + 1) + n (n - 1)J (49) 

\ u/u s] 
0.16 - \ J’ max,LEs 

\ 

\ 
0.14 - 

* OG? - 
Y -I 

$,,.- 

2 006- 

006 - 

004 - 

DOZ- 

00 I I I I 
I 2 3 4 

s2.c 

FIG. 7. Auxiliary curves for maximum velocity matching. 

in which 

272 = (2 sz + 1) (2 s2 + 2) (2 s2 + 3)/2 SI (~1 + 1) 

(a+ s2 + 1) (Sl + f2 + 2) 

F = s”,z/(l + Ss)(r+szf 

This function has been plotted in Fig. 7 as a 
function of sg for values of n = 1, 2, 3, 4 and 5 
together with the function (.%&#8)LES of the 
parameter c [equations (46), (47)]. 

One obtains by cross plotting from Fig. 7 for 
fixed values of n and equal values of Ksa and 
(U/@max the family of curves Fig. 8, for 

EQUAL MAXIMUM 
VALUE POSlTlONS 

-92 

FIG. 8. Curves for equal m~mum ~tchi~ velocities 
and equal maximum value y positions. 

values of c and ss giving equal maximum velo- 
cities at fixed values of n. Figure 8 also contains 
a plot of values of c and sa which provide the 
same positions of m~mum velocity at the 
matching position of the solutions. The inter- 
section of the latter with the equal maximum 
value family thus provides values of c and sa for 
equal maximum velocity values as well as the 
same positions for these values. It appears that 
such intersections will be available only for 
values of IZ greater than some number somewhat 
larger than 3. On the other hand, it is clear from 
Figs. 9 and 10 which compare matching velocity 
distributions for c = 4 and the corresponding s2 

taken from the equal maximum velocity curves 
(Fig. S), that the lack of matching for positions 
of m~mum velocity does not appear par- 
ticularly significant except possibly for values of 
n near one. In the latter case the velocities in the 
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FIG. 9. Comparison of velocity distribution at matching 
position. 

n near I 

I.0 

FIG. 11. Comparison of temperature distributions at 
matching position. 

1329 

cm 
02 0.4 Y/so6 0.8 I.0 

FIG. 10. Comparison of velocity distribution at matching 

AT - 
rrm 

position. 

FIG. 12. Comparison of temperature distribution at 
matching point. 
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l/l I I I I j I I I j 
0 I 020.3 0.4 0.5 0.60.7 0809 I.0 

u/x, 

FIG. 13. Isotherms for constant temperature values 
(T - Tm)/Tm 7.0 Xl%, n = 2. 

outer part of the boundary layer could stand 
improved matching and the wall shearing stresses 
could stand better matching. It is probable that 
the matching in this instance could be improved 
by relaxing the other boundary matching re- 
quirements that have been set, such as wall heat 
transfer, maximum velocities and boundary 
layer thickness. Since values of n near one involve 
essentially a discontinuous vertical wall tempera- 
ture gradient at the thermal leading edge actual 
physical settings of this kind are unlikely to 
occur and, hence, the value of working up 
improved matching characteristics for such 
values of n is very questionable, and thus was not 
attempted in this paper. 

Comparison of wali shearing stresses at matching 
position 

It may be shown that the wall shearing 
stresses of the solutions involved are respectively 

@u/aY)y=O]LES = (@LES 

Kw~Y),=olus = (ZmJs I 
cw 

These are each multiples of the function 

Y/X, 

FIG. 14. Lines of heat conduction when n = 2. 

+@+a) and thus a direct comparison of the 
wall stress at the matching position is available 
for variations in n. Table 1 makes the compari- 
sons for the n range 1 c n > 5. 

Figures 11 and 12 compare temperature 
matching distributions for several values of n. 
In this instance it appears that the matching is 
best for the lower values of n which is contrary 
to what was found for the velocity matching. 
In any case the temperatures are reasonably well 
matched. 

Isotherm and line conduction structure for the 
case n = 2 

Figure 13 shows the isotherm structure from 
the leading edge to matching position when 
n = 2. The isotherms were obtained from the 
derived equations 

(T- TCzJ/Tm 70 s; = X” {l + PC, K(l 

- X) (y/6) - n (n - 1) Rz (yjS)z/2 - [4 

+3PwK(l-X)-n(n- l)K”](y/S)3 

+ [3 + 2P,,K(I - X) - n(n -- 1) 

~2/21(y/q*; Y/Xl = (Y/S> KK (5 1) 
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n 

Table 1 

Near 1 2 3 4 5 

[U/703’(n+3’]LES 25 5.96 2-47 I.24 @73 
[u/6 70~~‘n+3qUs 18 5.35 243 1.25 0.73 

The heat conduction lines shown in Fig. 14 
were determined analytically as the orthogonal 
trajectories of these isotherms. 

It is evident thus that the present treatment of 
the thermal leading edge problem for wall 
temperatures of the form Tzo/T = I + TO x* 

gives good quantitative matc~ng results for 
values of n > 2 and qualitatively acceptable 
results even for values of n near one where the 
vertical wall temperature gradient (at x = 0) is 
essentially discontinuous. An experimental pro- 

gram is in process to test these results for the 
case 12 = 2. The reversed conduction effect has 
been confirmed. 
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R&urn&-La convection naturelle B pattir d’une region de bord d’attaque thermique (Tw/Tm = 
1 + 7. xn, n > 1) est determinee et ra.ccordCe & la solution connue immediatement au-dessus de 
cette region. On montre que, dans cette region, la conduction de la chaleur s’effectue vers le bas pres de 
la paroi et s’ecoule vers cette paroi juste au-dessus du bord d’attaque de telle faGon qu’il y a une region 
juste au-dessus de ce point dans laquelle le transport de chaleur a une direction contraire & celle que 
l’on attendait. Des comparaisons des distributions de temp&ature et de vitesse a l’endroit de jonction 

des solutions sont donnees pour plusieurs valeurs de l’exposant IZ. 

Zusammenfassung-Fiir einen Bereich am Beginn der thermischen Grenzschicht (TEo/Tm = 
1-t” 7. x*, n > 1) wird die freie Konvektion bestimmt und an die bekannte Losung unmittelbar 
iiber diesem Bereich angeglichen. Es wird gezeigt, dass in diesem Bereich in Wandn[ihe W&me math 
unten geleitet wird, die kurz tiber der Entstehungsstelle der thermischen Grenzschicht in die Wand 
zuriickstromt, so dass es gerade tiber diesem Punkt einen Bereich gibt, in welchem der Wtirmetibergang 
der erwarteten Wirmestromrichtung entgegengesetzt ist. Fiir mehrere Werte des Exponenten n 
werden Vergleiche fib Temperatur- und Geschwindigkeitsverteilungen an der Angleichstelle der 

Losungen angegeben. 

A~o~a~~~-~o~~~ieHo pOIIIeHM0 ZJIH eCTeCTBeIIHO& HOHBeHHHII JIJIH ~epT~I~a~bH0~ CTeHHH 
B 06JIaCTH TeH~OBO~ IH?peAHei& HpOIHH (T&T, = 1 + fOXn, R > 1): KOTOpOO CMbI~a~TCH C 
I~3~eCTHbI~ pemeIII~eM &HfI OGJIacTII, ~Ie~aI~e~ HenOCpe~CTBeHHO 38 He%. IloHaaaHo, 9TO II 3TOH 
MOCTi? HMOOT MeCTO ~OH~y~TI~BHa~ IIOpI!!HaHa TOIIJIa BH113 II0 IIOTOHy H6Hm3II CTeHHH, HOTOp 
BO3BpamaeTCH B CTeHKY B .HeCTO, PaC~O~O~eHHO~f HeHOCpe~CTB~HHO 3a IIepeAHet IipOMHO&. 
Tamtw 06pa3oM, anfeewx 06nacTh Han aToi5 K~OMKOB, rHe HanpaHHeIrne TOIIJIOO6MeHa npo- 
THB~IIOHOXCHO 0HiHAaernoMy IIanpaeneIIm0 TenjIoHofo HoToua. J&m IreHoTopbIx 3HaseHHB 
3ICCIIOHeHTbI “lE” IIpHBOnHTCH lIaCHpi?~UIeHIIH TOMHepaTyp A CHOpOCTeH B OKpeCTHOCTII 

cnblHaHHt4 pemeHHti. 


